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Abstract

A novel fractal illumination method is introduced to analyze the fractality of rough surfaces. In computer simulations,
some different self-affine random surfaces are employed as models of rough surfaces having the fractality, and their scaling
factors are evaluated by the proposed method. The results are compared with those obtained by an array illumination
method. The sensitivity of these methods toward the scaling factor 15 discussed. The method is applied 1o thres different
actual rough surfaces, and their fractalities are evaluated experimentally. The efiectiveness of the proposed method is shown,
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1. Introduction

To characterize rough sorfaces, RMS  (root-
mean-square)-roughness has been used most fre-
quently. In recent years, however, it has become
clear that a certain class of actual surfaces has
complicated structures with scale-invariant features
and 15 not effectively characterized only by the
EMS-roughness since such structures do not have
characteristic lengths [1]. The scale-invariant feature
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of rough surfaces has attracted great interest in many
fields [2-6] and 15 called fractality. The surface with
this feature is a fractal surface. To evaluate the
fractality of the surfaces in a noncontact and nonde-
structive way, some optical methods analyzing the
fields diffracted or scattered coherently by surfaces
are investigated [7-15] However, these methods
have some problems to be mentioned in the follow-
ing. The power law representing the fractality of
objects may not certainly appear in the diffracted or
scattered field if the object is a surface fractal [1].
Even if the power law appears in the field, it is not
practically easy to detect precisely the power law
because the strong low and the weak high spaual
frequency components coexisting in the field require
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a detector with a very wide dynamic range. Further-
more, i the surface has several different kinds of
fractality within an illuminated area, it is almost
impossible to detect each fractality separately.

To overcome these problems, we have introduced
an optical method using an array illumination and
applied it to some fractal surfaces [16]. The effec-
tiveness of this method was investigated by means of
computer simulations and experiments. In the study,
it was elucidated that the wvertical and horizontal
scaling factors, which characterize the fractality of
the surface, can be determined by two quantities
being measurable in experiments. However, a sensi-
tivity of this method is not sufficiently high and not
stationary.

In this paper, to evaluate more precisely the scal-
ing property of surfaces, a method using a fractal
illumination is introduced and is applied to the frac-
tal surfaces employed in Ref. [16). The effectiveness
of this novel method is investipated by means of
computer simulations and experiments, The results
are compared with those obtained by the array illu-
mination method.

2. Principle

The principle of a fractal illumination method is
basically similar with the array illumination method
[16]. The fractal surface is illuminated by the inci-
dent light having a grating-like intensity distribution
with an incident angle @, as shown in Fig. 1{a).
Then, a regular grating pattern G, is formed on the
sutface. If we observe an image of this pattern
formed in another direction with an angle #,, the
imaged pattern G, is no longer regular because the
image of each element of the regular pattern is
shifted according to an irregularity of the surface. If
the surface is flat, the regular grating pattern of the
incident light impinges on the positions indicated hy
pray dots in Fig. 1(b) and, hence, the observed
pattern is also a regular grating. However, in case of
the rough surface, the grating pattern of the incident
light impinges on the positions indicated by black
dots in Fig. 1(b) and, hence, the elements of the
observed grating pattern are shifted by lengths e,
€3, €3, and s0 on, which depend upon heights of the
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Fig. 1. Schematic representation of (a} the measuring system and
(b} the modulation mechanism of the grating patern by the
surface,

imaging points, A relation between the surface height
h above the mean surface at each array element of
the incident light and the comesponding shift ¢ is
given hy

sin{ 4, + 6,)

cosf,

g (1)
Namely, the regular grating pattern G, is modulated
by the random height of the fractal surface and
becomes a randomized grating pattern (3, involving
a scaling fluctuation. The information about the frac-
tality of the surface is extracted by analyzing this
randomized grating pateern [17].

In the array illomination case, it has been found
that the ensemble-averaged power spectra of the
randomized grating pattern have periodic major max-
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ima with an increase of the spatial frequency and
that the values of the major maxima decrease with
the power law. From this power law, we can deter-
mine the ratio of two important vertical and horizon-
tal scaling parameters; which characterize the scaling
property of fractal surfaces. For more detailed results
refer to Ref. [16].

In this paper, we use a fractal illumination which
has an intensity distribution having a form of the
triadic Cantor grating of level 6 [2], instead of the
array ilumination, The conventional array illumina-
tion pattern used in Ref. [16] and the proporsed

| Array |llumination

|.T. Cantor llumination

X

Fig. 2. A portien of the array illumination patiern {top) and the
Cantor illumination pattern {bottom),

Cantor illumination are schematically represented in
Fig. 2. The Cantor grating is considered to be a
multiscale grating. In Fig. 2, the Cantor illumination
pattern 15 given by product of the different scale
periodic grating patterns. The Cantor grating is also
modulated by the fractal surface in the same way
with the array illumination case and becomes a
randomized Cantor grating pattern which involves
the scaling fluctuation reflecting the fractality of the
surface, Hence, the scaling property of the surface
can be revealed by analyzing the randomized Cantor
grating patlern.

3. Simulation

3.1, Surface model

The optical system and the surface model as-
sumed in present simulations are similar with those
used in simulations of the array illumination method
[16], apart from the pattern of incident light. The
self-affine surtaces are employed as a typical model
aof fractal surfaces. The height i x) of the surface is
represented by

o
h(x)=A L ' “a(x), (2)

i—1

where N is a number of superpositions and is called
a level, v, is a vertical scaling factor governing the
vertical scaling property of the surface, and a,( x)
stands for the random process whose amplitude dis-
tribution obeys a zero-mean Gaussian probability
density function with a certain standard deviation o,
alx) is constant within an interval given by

{E=&TJ]_I. (3)

and 1s independent of its value in a different interval.
In Eq. (3), ¥, is a factor goveming the horizontal
scaling property and is called a horizontal scaling
factor (see Appendix A) In addition, the incident
angle is assumed to take &, = (). This means that the
surface 15 illuminated normally o reduce the effect
ol shadowing on the surface.

_5"-'_
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1.2, Fractal illumination model

The fractal illumination with the Cantor grating
pattern of level 6, C,(x}, is expressed by

Calx) = [8{x+L/3)+8(x— L]
@[8{x+L/3)+8(x—Ls37)]

®[8(x+L/3%) + 8(x — L/3")]
BE(x), .
where 8(x) is the Dirac delta function and ® stands
for the convolution operation. In Eq. (4), E(x)

represents a shape of the segment of level 6 which is
expressed by

A lxl=L/2-3%)
0 lxl=L/(23%)
= Arect(2-3%x/L), (4)

where A 1s an intensity of the incident light. The
pattern represented in Fig. 2 is a portion of this
Cantor illumination model,

Efx) =

3.3, Caleulation and results

On the basis of the simulation model, 200 data of
the Cantor grating patterns modulated randomly by
the fractal surface are calculated for each of several
surfaces with different values of vertical scaling
factor ¥, horizontal scaling factor ,, standard devi-
ation oy of fluctuations on the surface, level N of
the scaling property, and detecting angle ¢,. Subse-
quehtly, the ensemble average E{5'(u)} of the modi-
fied power spectra S'(u) = P(u)/F(u) of the modu-
luted Cantor grating patterns is calculated, and sev-
eral results normalized by the central peak value S(0)
of a modified power spectrum for the Cantor prating
pattern without fluctuations are shown in Fig. 3(a)-
(d) as a function of the spatial frequency u for
(e,.3%1,) in a log-log representation. Here, P(u)
stands for the power spectrum of the modulated
Cantor grating pattern, F(u) is the Fourier transform
of the shape of an element given by Eq. (4), and u,
15 the spanal frequency given by

k)

Hp = —"—, 3
" 4Lcosé, (5)
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Fig. 3. Log-log representation of ensemble averages of modified
povwer spectra of the modulated Cantor grating patterns calculated
for surfaces with y, = 3, N =6, and four different values of % ~
(ud1.5, ()2, (c)3, and (d)4 for the spatial frequency cange of (u,,
3%u,, ), under the conditions of the incident angle &, = 0F and the
detecting angle #, = 307, The results are normalized by the central
peak value of o modified power speetrum for the repular Cantor
grating pattern. The broken lines represent a power function u =%
and the gray lines represent power functions of (alu™ %, (hin® %
Cedu =100 pnd (e 200,

where L is the whole width of the incidemt Cantor
illumination.

Results of the present simulations show quite
different features from those for the array illumina-
tion shown in Fig. 4(a)—(d). The simulation results in
Fig. #(a)-(d) is taken from Ref. [16]. When the
scaling factor of the Cantor grating matches the
horizontal scaling factor of the surface, namely, in
the case of y, = 3, the calculated result shows very
interesting features, Fig, 3(a)-(d) show the results
for the self-affine surfaces with y, =3, N =6, and
four different values of y = (a)1.5, (b)2, ()3, and
(d}, and with # ={° and @, =730 It is seen in
these figures that, in each case, the function
E{S ()} ,/5(0) has maxima and minima periodically
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Fig. 4. Log—log representation of ensemble averages of modified
power spectra of the modulated grating patems evaluated for
surfaces with v, =2, N =46, op = 0.1, and four different values
of ¥ = {a)l.5, (h2, {13, and {dM for the spatial frequency range
of (0.4, 10w,). under the conditions of &, = 0% and 8, = 30°,
The results are normalized by the central peak value of a modified
power spectrum for the regular grating, The pray lines represent

the power functions of ade 0 (b= (ede™ 3, and

(ol =74,

on the log scale. and that the logarithmical values of
these maxima and minima depend linearly on loga.
The phenomenon of an abrupt raise of the curves in
the region exceeding 3%u,, is due to a zero of Fu),
and 15 not an essential phenomenon, a5 mentoned in
Refs. [16,17]. In these figures, the broken lines
touching maxima of curves represent a power func-
tion w “, Here, D_ is the fractal dimension of the
triadic Cantor grating and takes a value of log2 /log3,
On the other hand, the gray lines touching minima of
curves rtepresent power functions of (a)u"®,
(bde™ P (a0 and (dhn "%, respectively.
Therefore, it is clear that the minima obey the power
law whose exponent depends upon the vertical scal-
ing factor 9, of the surface, while the maxima
decrease with a power law u " in all cases. Fut-
thermore, it 15 found from the numerical simulation
that the exponent in the power law of minima takes a
value of (2 — y 10, It follows from this result that
we can determine the value ¢, of scaling fluctuations

in the self-affine surface from the observation of the
minima of the function ELS(ud) /50D,

A comparison between Fig. 3(a)-(d) and 4{a)—{d}
indicates that a changing rate of the exponent r = (2
— ¥ )0 in the power law of minima for the Cantor
illumination with an increase of the vertical scaling
factor ¢ seems different from that of the exponent
r=—v,/v in the power law of maxima for the
array illumination. To make this point more clear,
we caleulate the absolute values |-/ of partial differ-
ential coefficients of the exponent r with respect 1o
the vertical scaling factor ¥, . Since the exponent » in
the power law of the major maxima of the ensemble
average of the modified power spectra produced by
the array illumination is represented by —9, /¥,
[16], its partial derivative is given by ¥y, /3°. On the
other hand, in case of v, = 3, the exponent r in the
power law of the minima of the ensemble average of
the modified power spectra produced by the Cantor
illumination is represented by {2 — v, )0, and, hence,
its partial derivative with respect to ¥, is given by
—D_ The above two derivatives with y, =3 and
D =log2 /logd are plotted in Fig. 5 as a function of
. for the range of (1.0, 5.0). From this figure, it is
clear that the partial differential coefficient || cor-
responding to the array illumination decreases rapidly
and nonlinearly with an increase of -y, while that
corresponding to the Cantor illumination takes a
constant value over the range. Therefore, the Cantor
illumination provides a linear sensitivity with the

2.':] I 1 1 T ]
v Array Humination
- | —  Canlor llumination
= | L
“| = 1.0r .
@i
. D‘l
D-Dl' i . L i : 1 \ L
1.0 218 4.0 5.0

¥

Fig. 5. Abzolute walues of parlial differentisl coefficients of
exponents in the twa power laws! the power law of major maxima
of the modified power spectra produced by the arcay illumination
Cgray curved, und the power law of minima of the modified power
specira produced by the Cantor illumination (black lined The
honzonial scaling factor v, of the surface 15 set to 3,
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value of ¥ . while the array illumination provides a
nonlinear sensitivity.

In addition, the two partial differential coeffi-
cients are crossing at vy, =y, /D, = 2.18. There-
fore, in case of 2.18 <y, the method using the
Cantor illumination 18 more sensitive than the method
using the array dlumination while, in case of
v, < 2.18, the method using the array illumination
becomes more sensitive than the other. It 13 noted
that, in case of v < 1.00, the surface model has a
very unusual shape and cannot be effective as a
madel of practical surfaces. Hence, in most cases of
v, the Cantor illumination 15 advantageous over the
array illumination., For the larger fractal dimension
D, the Cantor illumination is advantagecus in a
wider range of .. The Cantor illumination has an-
other advantage. Since the minima of the partial
differential coefficient in Fig. 3(a)-(d) are periodic
mn loga, we can determine a decreasing rang of the
munima from the same number of data of the minima
for different u's. In case of the array illumination,
however, the interval of the major maxima of the
coefficient is reduced with an increase of the spanal
frequency [16], the number of data of the major
maxima used to determine the decreasing ratio varies
depending on the spatal frequency region.

This advantage of the Cantor illumination 15 a
consequence of the scaling property of the illumina-
tion pattern which fits that of fluctuations in the
surface. The Cantor grating is regarded as a multi-
scale grating as shown in Fig. 2. Namely, the struc-
ture of each scale o the Cantor illumination can fit
the fluctuations of the same scale on the rough
surface, which causes a large variation of the power

spectrum of the pattern. This advantage is also veri-
fied experimentally in the next section.

4. Experiment

The expenmental setup 15 represented in Fig. 6
which 15 the same with that used in the array illumi-
nation experiment, apart from the incident light pat-
tern [16]. The Cantor illumination is effectively real-
ized by the scanning method. A spot is formed on a
surface by a Gaussian beam from a He-Ne laser
which i1s incident normally upon the surface. An
image of the spot is detected by a CCD camera with
the detecting angle of #,=30° and is fed into a
computer through a frame memaory. The horizontal
position of this spot image in the CCD plane is
shifted due to the height of surface as shown in Fig.
1{b}, and hence the shifted spot image includes the
information about the height of the object surface at
the illuminating point. In the same way, the next spot
image 15 recorded on the frame memory, after a
suitable lateral shift of the object. When the whole
surface has been scanned in this way, the recorded
spot images are superposed in a computer to give the
modulated grating pattern.

As fractal surfaces, three different rumpled sheet
materials, which were used in Ref. [16], were also
employed as fractal surfaces: rumpled 15 pom thick
aluminum foil which is known to form a fractal
surface with a multi-scale rough shape [11,18], rum-
pled thin paper for a copy machine, and rumpled
vinyl-coated paper. The RMS-roughness was mea-
sured in a square area of 150 % 150mm® for these
matenals and found to be 59mm, 4.7mm, and

Lo Ly
L4 .-‘-.I f Object _+
\ He-Me Laserb— = i o P | FPulza Stage
MD Filtar w v ¥
Cnmputer]
—
Fig, 6. Expenmental setup.
— (0 —
— — s
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53.7mm, respectively, Since the surfaces include fluc-
tuations with a wide range of amplitude to realize the
scaling property of a large level, these RMS-rough-
nesses take somewhat large values. By using this
experimental system “and these surface materials, a
set of data having 50 data of modulated Cantor
patterns produced experimentally on a surface is
provided lor each surface. In each case, from these
data, the ensemble-average E{S{u)] of the maodified
power spectra of modulated Cantor patterns is calcu-
lated and, then, the results normalized by the central
peak value S(0) of a modified power spectrum for
the Cantor pattern without fluctuations are shown
logarithmically in Fig. Ha)-{c} as a function of the
spatial frequency w for (u,,3%,). Here, the spatial
frequency w, is caleulated from Eq. (5) and takes a
value of 7.8m ™', under the conditions of the incident
angle #, = 0" and the detecting angle #, = 30°. The
results in Fig. Ta)=(c) are corresponding to the
rough surfaces made of the aluminum foil, thio
paper, and vinyl-coated paper, respectively.

E{STu)}'5(0)

Fig. 7. Log-log representation of ensemble averages of the modi-
tied power spectra of modulated Cantar grating patiems produced
experimentally on rumpled surfaces made of (8) 15-um-thick
aluminum fol, (b} thin paper, and {c} vinyl-coated paper for the
spatial frequency range of (uy, 3%, ). under the condition of the
incident angle @, =07 and the detecting amgle 8, = 307, The
results aue pormabized by the central peak value of a madified
power spectpuim for the regular Cantor grating pattern. The broken
lines represent a power function w '+ and the eray lines represent
power functions of {a)e™ 5% (B ™ and (o)~ 140

From these figures, it is recognized that, in each
case, the coefficient E{S (w)} /5(0) has maxima and
minima periodically on the log scale and that the
logarithmical values of maxima and minima decrease
linearly with loguw. In these figures, the broken lines
touching maxima of curves represent a power func-
tions w7, where D, is the fractal dimension of the
triadic Cantor grating and takes a value of log2 /log3,
while the gray lines touching minima of curves
represent power functions of ™% "8 and
w U respectively. It is noted that, in each case,
the height of minima varies with the power law
whose exponent is changed by the surface, while the
height of maxima decreases with the power law
w~" in every case. Therefore, it is clear that these
results are congruous with those of simulations rep-
resenting Fig. 3(a)—(d). Accordingly, we can deter-
mine the vertical scaling factor v, of rough surfaces
from these results and the relation revealed by simu-
lations in the previous section, As a result, the
evaluated values of -, for three object surfaces of
aluminum foil, thin paper, and vinyl-coated paper are
approximately 1,75, 2.00, and 2.45, respectively.
These values agree with those evaluated by the
method using the array illumination in Ref. [16].
Furthermore, it is recognized that a changing quan-
tity of the exponent in the power law of this method
with an increase of the vertical scaling factor y, of
the surface 1s bigger than that in the method using
the array illumination shown in Ref, [16].

Consequently, it is clear that the method using the
Cantor illumination 15 more advantageous than the
method nsing the array illumination for an evaluation
of the scaling property of fractal surfaces, apart from
the case that the vertical scaling factor 3, of the
surface has the value close to 1.0 and that very
sensitive measurements of ¥ are needed.

5. Conclusion

To evaluate the scaling property of fractal sur-
faces, an optical method using the Cantor illumina-
tion was introduced. Tt was applied to several fractal
surfaces and the property of this method was investi-
gated by means of computer simulations, The results
were compared with those for the method using the
array illumination.
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In simulations, self-affine surfaces with various
values of parameters were employed as fractal sur-
face models. The ensemble average of the modified
power spectra of the Cantor grating patterns, which
are randomized by fractal surfaces, was calculated
numerically. From the simulations, it was elucidated
that these ensemble-averaged spectra have maxima
and minima periodically on the log scale, and that
the logarthimical values of these extrema vary lin-
early with logu. The height of minima varies with
the power law 1"~ 7' while the height of maxima
decreases with the power law w7, where D is a
fractal dimension of the triadic Cantor erating and
takes a value of log2 /log3. This result allows us to
determine values of the scaling factor v, of self-af-
fine surfaces.

To compare the sensitivity of the slope to a
change of the scaling factor, absolute wvalves of
partial differential coefficients of the exponents in
the power laws for the two illumination methods
were calculated, It was made clear that the coeffi-
cient for the array illumination decreases rapidly and
nonlinearly with an increase of -y , while the coeffi-
cient for the Cantor illumination is constant. The
array and Cantor illuminations show nonlinear and
lincar sensitivities, respectively. Therefore, a higher
sensitivity is provided by the array illumination for
Y <y ¥/ D, . and by the Cantor illumination for

V¥eA L <y, In addition, the number of major max-
ima and minima used to determine the power law is
constant for the Cantor illuomination, but it is not
constant for the array illumination and varies de-
pending on the spatial frequency region. From these
results, the Cantor illumination is more advantageous
than the array illumination to evaluate the fractality
of rough surfaces.

The results of simulations are verified by the
experiment. Three different rumpled sheet materials
having the scaling property were tested. In each case,
the coefficient has maxima and minima periodically
on the log scale, and that the values of minima vary
with the power law depending upon the scaling
property of the object surface, while the values of
minima decrease with a power law which 15 indepen-
dent of the scaling property of the surface. These
results agree with those of simulations, In addition,
the evaluated scaling factors well described the fea-
ture of each random surface.

In this paper, the one-dimensional Cantor illumi-
nation was introduced. Although such an illumina-
tion 15 enough to analyze tsotropic two-dimensional
(2D} surfaces as the case of the present experiment,
this method can be extended easily, if necessary, to
anisotropic 2D fractal surfaces by introducing a 2D
fractal illumination, e.g. a Cantor mesh or a 2D
scanning method.

Finally, the proposed method will be useful for
analyzing conditions of actual surfaces having frac-
tality, such as natural sorfaces of rock and soil,
rumpled surfaces of paper and thin films, and sur-
faces of various materials processed mechanically or
chemically.

Appendix A
The self-affine surfaces employed in the present

simulation are produced by superposing many ran-
dom processes which have different standard devia-

¥, enlx) + _Hr.aH_
A NHHIM
¥ nirm

I
xl & -|.|“
J 1
-k
I'l-l..r-[' 1

Fig. & Schematic representation of the generating procedure of
sclf-affine surfaces.
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tions and correlanon lengths as shown in Fig. 8. In
Eq. (2}, v, 18 a vertical scaling factor controlling the
relative standard deviation of each random process
and, hence, governs the vertical scaling property of
the surface, On the other hand, v, in Eq. (3) is a
factor determining the relative correlation length of
each random process and governing the horizontal
scaling property and is called a horizontal scaling
factor. As a combunation of these two scaling proper-
ties, these factors determine the fractality of the
surface. Namely, respective magnification in the ver-
tical and horizontal directions with the factors of .
and v, vields the same structure as the original in a
statistical sense, which 1s the self-affinity.

References

[1] B.B. Mandelbeot, The Fractal Geometry of Mature, Freeman,
Mew York, 1982,
[2] 1. Feder, Fractals, Plenum, New York, 198%,

[3] M. Barnsley, Fractals Evervwhere, Academic Press, San
Driego, 1988,

(4] H.-0). Peitgen, D. Saupe {Eds.), The Science of Fractals
Images, Springerc-Verlag, New York, 1938,

[5] T. Viczek, Fractal Growth Phenomena, World Scientific,
singapore, 198%,

(6] A. Aharony, J. Feder, {Eds ), Fractals in Physics, Nonh-Hal-
land, Armsterdam, 1990, {repnnted from Phyvsica D, vol. 3E.
Moz, 1=3, 1989,

{7] E. Jakeman, J. Phys. A: Math, Gen. 15 (1982) L33,

(8] M.V, Berry, J. Phys, A: Math, Gen, 12 {1972) 781,

[9] L. Jaggard, X. Sun, I. Opt. Soc. Am. A 7 (1990) 1131,

[10] P. Wong, A). Bray, Phys, Rev. B 37 {10%8) 7751

[11] DL. Jordan, F. Moreno, Waves Random Media 2 (1992) 29,

[12] A. Dogarin, 1. Uozomi, T, Asakura, Pure Appl. Opt, 2 (19393)
339,

[13] B.L. Cox. 1.5Y. Waung, Fractals 1 (1993) §7,

[14] 5. Frankenthal, AM. Whitman, J. Opt. Soc. Am. A 6 (1989)
1827

[153] S.K. Sinha, E.B. Sitots, 5. Garoff, H.B. Stanley, Phys. Rev.
B 38 {19ER) 2297,

[16] W. Wada, T. Unzumi. T. Asakura, Opt. Commun. 134 {1937)
264,

[17] W, Wada, T Uozumi, T. Azakura, Opr, Comimun, 130 (1994)
123,

[18] DL, Jordan, F, Morenao, I, Opt. Soc. Am. A 10 (1993) 1939.



