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ABSTRACT

Enhanced backscattering from random fractal media is investigated by means of Monte Carlo simulations based on
a randomized Menger sponge model of the media. Dependence of the coherent peak on the fractal dimension D is
obtained for 1.5 = [ < 2,79, and it is found that the slope of the peak shoulder in a log-log plot increases with D
until £ = 2.5 and then decreases for a further increase in 2. This behavior is elucidated on the basis of probabilities
of the scattering free path, the number of scattering in a multiple scattering path, and the separation of two end
particles in a scattering path.,
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1. INTRODUCTION

When strong multiple scattering media such as a dense collection of particles are illuminated by the coherent lizht,
appreciable enhancement of scattered intensity is observed in the retroreflection direction. Since the first experi-
mental observation by Kuga and Ishimaru,! extensive studies have been devoted to this phenomenon of enhanced
backscattering.” Recently, influences of fractality of scattering media on the coherent peak have attracted attention.®
For inhomogeneous random media such as fractal aggregates, however, theoretical analyses hased on a diffusion ap-
proximation for photon propagation are not applicable and, therefore, a computer simulation approach was used hy
Ishii et al.® In this simulation, the fractality of the scattering media is represented by the probability density func-
tion (PDF) of scattering free paths which was derived analytically, and a sequence of random numbers obeving this
density determines a multiple scattering path in the fractal media. Owing to a restriction of this density function,
however, this approach is effective in the limited range of 2 < D < 3 and, unfortunately, the fractal dimension of the
ageregates used in the past experiments®* is out of this range.

In the present paper, another simulation study employing a different approach is performed to overcome this
problem. In the new approach, fractal objects with desired fractal dimensions are numerically penerated on a
computer memory, and the photon migration is traced by a Monte Carlo method in the object. This approach has
complementary features to the former one in various aspects, and can cover the range of 0 < D < 3.

2. SIMULATION METHOD
2.1. Fractal media

In the new approach, details of fractal media must be specified using a certain fractal-generating algorithm prior to
numerical scattering experiments. We examined several different algorithms for generating fractals, and decided to
employ the structures produced by generalizing and randomizing Menger sponges.® This fractal has advantages that
the fractal dimension is almost constant from its lower limit to the upper of a given scaling range, and that arbitrary
fractal dimensions in the range 0 < I} < 3 can be specified. As a trade-off for these advantages, however, we laose the
connectivity between particles in the fractal, which is an inherent property of fractals such as agpregated particles,
The point is that the modified Menger sponge provides us with a well-behaved model of mass fractals with desired
fractal dimensions.

The modified Menger sponge is generated by the following procedure, Assume a cube of size M, and divide it
into ¢! small cubes by dividing each side into a equal segments. Take b out of a® small cubes at random and regard
each cube as including at least one particle. This step of division and selection is applied again to each of b small
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Figure 1. (a) Inten-
sity distributions of the
coherent peaks and (b)
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by the maximum wval-
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cubes, and this procedure is repeated until the divided cubes are reduced to a unit cube corresponding to an element
particle of the fractal. The fractal dimension of this structure is given by D = logh/loga. In the simulation, the
fractal dimension is varied by fixing the parameters a = 4 and M = 256 while changing the parameter b. As a result,
particles are located on a cubie lattice, and the diameter of particles is equal to the lattice spacing.

The restriction of M = 236 comes from the memery size of a computer used in the simulation, and is not sufficient
for simulating scattering processes, However, the object can be enlarged effectively by employing an algorithm based
on the self-similarity of the fractal. That is, each particle of the generated Menger sponge is identified with the entire
sponge and, thus, the effective object size is extended to M, = M? = 65536.

2.2. Ray tracing and the calculation of backscattering intensity

To reduce the simulation time, we simplify the problem by assuming that the light is scalar waves and is scattered
isotropically by each particle. The particle size is set to 0.1 pm, while A = 0.386 um, the value of A = 0.5145 um
in water, is used for the wavelength of light. The scattering process is simulated in the following way. A ray of
light is incident normally on one of six surfaces of the cube defining the medium and proceeds until impinging one
of particles. Then, a scattering angle is determined from random numbers so that the probability of direction is
uniform cver the entire solid angle, and the ray tracing is continued. This procedure is continued until the ray exits
from the medium or the number of scattering n, exceeds 400, In self-similar algorithm for extending object size, the
ray is traced also in the inside spuce of particle until it exits to the outside space or until n, reaching the limit. Only
when the ray exits from the incident surface, the coordinates of the first and last seattering particles are recorded,
from which backscattering intensity distributions are calculated by

Ny + N + T cos((ks + ko) (r pn = 7in)]
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=1+ Ip(f), (1)

where # is a backscattering angle with the origin at the retroreflection direction, N, and N, are the numbers of rays
exiting after single and multiple scatterings, respectively, k; and k, are wave vectors of the incident and exiting rays,
respectively, vy and r; are the coordinates of the first and last scattering particles, and the subscript n is a running
index for exiting rays. The unity in the rightmaost side of eq. (1) represents a constant background intensity, while
the second term I;(#) indicates the coherent intensity peak.

3. RESULTS AND DISCUSSION
3.1. Intensity distribution of the coherent peak

The backscattering peak intensity I;(8) was caleulated and is shown in Fig. 1 for the range of 1.5 < D < 2,79 of the
fractal dimension D). From Fig. 1{a), it is seen that the maximum intensity increases monotonously with the fractal

dimension. Since k, = —k, at the origin (f = 0), it follows from eq. (1) that I(0) = gia— = £ =1 - 1y,




Figure 2. (a) Probahil-
ity density functions of
the scattering free path
{y caleulated from the
simulation data, and (b}
their behavior for small

Iy

where i = N, /N, is the multiple scattering efficiency. Therefore, the increase in the enhancement peak of the
backscattered intensity indicates the relative increase in the multiple scattering. This is explained by the dimension
dependence of the average volume density of the particles, which is given for the present media by

pa = MP3 (2)

as is the case of actual fractal aggregates of particles. It follows that the density increases with I, reaching unity at
the limit of ) = 3 corresponding to the closest cubic packing of particles. This increase in the particle density gives
rise to the enhancement of K and, thus, raising the central intensity,

To make more visible the variation of the peak shape, Fig. 1{a) is normalized by {,(0) and shown in Fig. 1{b). Tt
is seen that the slope of the shoulder of the peak changes depending on the fractal dimension D, increaseing with D
up to [} = 2.5 and, then, turning to decrease for D > 2.5. The former tendency agrees qualitatively with the previous
simulation® and with the experimental results,®* though the former simulation treated the case of 2.5 < D<30 A
reason for the inverse dependence for 2.5 < D is discussed later,

3.2. PDFs of the scattering free path and the separation of end particle pairs

To examine how the object fractality affects the scattering process, the PDF py(t 1 of the scattering free path iy was
calculated and is shown in Fig, 2. It is seen in this figure that, with an increase in D, probabilities of shorter paths
decrease while those of longer paths decrease up to D = 2. This dependence is reversed, however, for larper I}, This
dependence for D < 2 can be explained from the spatial density distribution of particles. In case of mass fractals
such as the Menger sponge and aggregated particles, the spatial density distribution p(l) of particle, which gives the
probability of finding a particle at distance { from any given particle in the medium, takes the form

pll) o 193, (3)

For media with very small fractal dimensions, the average particle density is very low as eq. {(2) implies and, therefore,
it seemns that the ray can take very long free path Iy, On the contrary, however, it is seen from eq. (3) that the
probability of finding a next scattering particle at distance { decays rapidly with ! and, consequently, probabilities
of small Iy become relatively dominant. As D increases, probabilities of small { § decrease as long as D < 2, where
the medium is practically transparent. When I exceeds 2, however, the medium enters the opague regime and, in
addition, becomes much more dense and, consequently, pi(l;) for small { 5 begins to increase with increasing D,

A quantity that affects directly the shape of the coherent peak is the probability of the separation § of the first and
last particles in the multiple scattering path, which in turn depends on D through | ¢ and the number of scattering
fe in a scattering path. The PDF pn(n,) of n, is shown in Fig. 3, while Fig. 4 shows the PDF ps(8) of 4. Figure 3
shows that probabilities of large n, increase drastically with an increase in D because of the associated rapid increase
in gg. If pr(n,) is independent of 1), the D dependence of ps(§) would be similar to that of pi(l;) shown in Fig. 2,
However, the large increase in n, with D has an effect of elongating 8, which will counteract the effect of reducing §
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Figure 3. Figure 4.
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due to the diminishing {; for D) > 2 and shift the turning point of the I} dependence of pg(d) from £} = 2 to a larger

value, In fact, Fig. 4 shows that the turning point 1s shifted to D = 2.5, This explains why the D dependence of the
slope in the coherent peak turns at £2 = 2.5,

In the simulation by Ishii et al.,® the slope of the coherent peak increases with D in the range of 2.5 < D < 3,
contradicting the present result. It is to be noted, howewver, that the present behavior of the coherent peak for
L » 2.5 is mainly due to the high density of particles for extremely large I, where the particles are nearly in the
closest packing and block almost completely the propagation of light. On the other hand, in the fractal media with
a constant and moderate particle density used in Ref. [4], some rays can propagate far beyond neighboring particles
and can sense the fractality of the media. In actual fractal aggregates, the particle density follows a power law
similar to eq. (2), and increases drastically with 2. Howewver, it would be also true that the light can penetrate
neighboring particles even in the dense and opague region I} > 2 when the particles have small scattering cross

sections. Therefore, some intermediate dependence between the results of two simulations might be expected for
actual fractal agpregates.

4, CONCLUSION

By means of a new approach on the basis of computer-generated fractal media, the [} dependence of the coherent
peak of the enhanced backscattering was demonstrated for the wide range of I} The shoulder of the coherent peak
was shown to inerease with [ until D = 2.5, after which the tendency is inverted. This inverting anomaly was
elucidated by extremely dense structures of the assumed media.

The simulation models of the previous® and present studies have some complementary features. The fractality is
assumed indirectly through the PDF of {; in the former and is assumed directly in media in the latter, The former is
more theoretical while the latter is closer to actual experiments having scale limitations. Further combination of these

approaches will be effective in better and more quantitative understanding of the multiple scattering phenomena in
fractal media.
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