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ABSTRACT

Intensity distributions and their correlation properties are investigated theoretically and experimentally for speckle
fields produced by a double scattering process by means of a random fractal object and an ordinary phase screen.
Speckle patterns generated in the Fraunhofer diffraction plane (a focal plane of a Fourier-transforming lens) of the
second diffuser have clustered and self-similar appearances, and hence are regarded to be fractal. Their intensity
correlation functions are shown to obey a power law, The similar intensity distributions and correlation properties
are also observed in lateral planes at different distances from the lens. The correlation function in the longitudinal
direction is also examined and found to have a power-law behavior, indicating the existence of three-dimensional
fractality of the field. Finally, fractality of speckle patterns produced in the Fresnel diffraction region of the ordinary
diffuser is demonstrated.
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1. INTRODUCTION

It is recognized nowadays that various fractal geometries are found in many struetures that are formed naturally and
artificially. Typical examples are found in physical processes such as phase transitions, aggregations, and interface
formations, as well as in biological structures such as neurons and vessel networks.'? To apply the optical technology
to such structures with fractal properties, it is desired to understand how the fractality of a given object influences
the properties of the diffracted or scattered field. Since the first explicit attempt made by Berry,® who coined the
word diffractals to denote such optical fields, extensive studies have been made from this viewpoint in the past two
decades. 1

On the other hand, if one consider any applications of the concept of fractal to the aptical technology, it is
attractive to create an optical field having a fractal property which is controllable in a certain manner. The PUrpose
of this paper is to discuss a method to produce random optical fields that have controllable fractal properties. Such
fields will be observed as a kind of speckle patterns having power-law tails in spatial correlation of intensities. As a
practical situation for producing such speckles, we take advantage of the fact that the average spatial distribution
of the intensity scattered by a fractal object becomes a power function ¢~ 7, where I} is the fractal dimension of
the fractal object and g is the radial coordinate of the observation plane.® On the other hand, if the intensity
distribution of the illuminating spot on an ordinary scattering surface is a power function, the autocorrelation funetion
of speckles observed in the Fraunhofer diffraction region is also expected to take a power-law behavior owing to the
relation analogous to the van Cittart-Zernike theorem. These two scattering processes indicate that, if an ardinary
diffuser is illuminated by diffractals having a power-law average intensity distribution, the resultant doubly seattered
fields may have a power-law correlation property.

In this paper, our previous studies’® on this subject are summarized and. in addition, a recent development is
introduced. In Section 2, spatial intensity correlations are discussed theoretically for the field that is scattered first
by a random fractal object and subsequently by an ordinary diffuser, and is produced in the Fraunhofer diffraction
plane of the ordinary diffuser. It is shown that the resultant intensity correlation obeys a power function under
certain conditions. This theoretical prediction is verified experimentally in Section 3, and several peculiar features
of such intensity distributions are elucidated. Further experimental consideration is given in Section 4 to explore the
three-dimensional fractality around the Fraunhofer diffraction plane of the ordinary diffuser. In Section 5, fractal
optical fields produced in the Fresnel diffraction region of the ordinary diffuser are discussed.
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Figure 1. Experimental set-up for producing speckles with fractal property.

2. THEORY

Let us consider an optical system shown in Fig. 1. In the object plane P, is placed a random fractal object. Assume
that the amplitude transmittance of the fractal object has a property of mass fractals. That is, by identifying a
transmittance distribution T{u) with a mass distribution, the total transmittance My (L) included in a circle of
radius L obeys a power function

Myp(L) = [ST{u}du x LY, (1)

where S is the area inside the eircle and I is a fractal dimension of the object. As a property of mass fractals, the
autocorrelation function of the transmittance distribution is also given by a power law

Cr(u) = (T{u + v )T (u")) o« w9, (2)

where d is the dimension of the Euclidean space where the fractal object is embedded and is d = 2 in the present
situation.

When this object is illuminated with a coherent plane wave from He-Ne laser as shown in Fig. 1, a speckle pattern
is produced in the Fraunhofer diffraction plane Py, the field of which is given by the Fourier transform of the field
just after the fractal object. Tt follows therefore that the spatial distribution of ensemble-average intensity of the
speckle pattern corresponds to the power spectrum of the field in Py, and is given by

{Ta)) o g, (3]

where g is a coordinate vector in the plane Pa. For a more realistic model, a singularity of (f{g)} at the origin is
avoided by introducing an approximation

(@) = {10} [1 +a’q?) P72, (4)
where a = (2w /A f1 )/ is a quantity proportional to the maximum scale B of the fractal object,

Next, consider that an ordinary plane diffuser is placed in the plane P, and is illuminated by the speckle field
which has the average intensity distribution of eq, (4). Let us assume that (i) the field illuminating the second diffuser
is a spatially stationary Gaussian speckle pattern with the average speckle size greater than the lateral correlation
size of the second diffuser and that (ii) if the second diffuser is uniformly illuminated, the speckle field scattered
from the second diffuser obeys the Gaussian statistics in the observation plane. Under these conditions, together
with some other easily acceptable conditions, the normalized correlation function of the intensity observed in the
Fraunhofer diffraction plane P of the second (ordinary} diffuser is shown to be given, asymptotically for r < MR,
by’

(T{ri)I(ra)) — (e )} (T (ra))

Crtr) () ira))
(r/MRPP-2 for 1<D<2,
0% log(r/MR))® for D=2, (5)
1 for 2< <l
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Figure 2. Random fractal objects produced by using the band-limited Weierstrass functions and employed in
experiments. Assigned fractal dimension was D = (a) 1.2, (b) 1.5, and (¢} 1.8,

where M = fo/ f is a magnification of the optical system. Equation (5) shows that the intensity correlation function
obeys a power law for 1 < D < 2, and this indicates that the speckle pattern observed in the plane Py is fractal. Tt
should be noted here that the parameter o used in eq. (12) and later in Ref. [7] should be interpreted as a = MR,

3. EXPERIMENT: FRAUNHOFER DIFFRACTION PLANE
3.1. Experimental configuration

In the present study, we employ random fractal objects having different fractal dimensions D generated by band-
limited Weierstrass functions.® For the present purpose, two Weierstrass functions defined by

N
z(t) = z a” cos(sb™ + i,

n;':.:' Izﬁ-]
yitl =n Z a™ cos{sh™t + ¢} )

1=l

are combined to generate a fractal trail (x(¢),y(t)). In eq. (6), n is a perturbation amplitude, s is a scaling factor,
b and ¢}, are uniform random variables over the interval [0, 27], and N is the number of tones with the relative
spacing controlled by 6. The fractal dimension of the trail is given by D = logh/logae.?'"  Actually, the trail was
calculated for discrete values of ¢, Examples of the generated trails are shown in Fig. 2. In generating the trails in
this figure, the number of tones was set to be 20 while the associated fractal dimension was D = {a) 1.2, (b) 1.5,
and {c) 1.8. These random fractal objects were printed out by a laser printer and were subsequently photographed
on films, which were used as the fractal objects.

With reference to Fig. 1, the speckle field produced by the fractal object was incident on a ground glass plate
placed at the back focal plane P; of Ly. The speckle pattern formed by the ground glass plate was recorded by
a CCD camera at the back focal plane Py of a lens Ly and was stored in a computer through a frame memory as
discrete data with 236 levels,

For comparison with the speckled speckles produced by the configuration of Fig. 1, an ordinary type of speckle
pattern was also recorded by the following configuration: The object at Py and the lens Ly were removed and the
circular aperture was set at Py to mask directly the diffuser. Then, the diffuser was illuminated normally with a
plane wave and a typical speckle pattern was produced at Pj,

3.2, Intensity distributions

When the fractal object is placed at Py, the speckle pattern illuminating the diffuser has an average intensity obeying
the power-law given by eq. (4). An experimental result of this pattern for the object of 12 = 1.8 is shown in Fig.
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Figure 3. (a) Fraunhofer diffraction pattern of the random fractal object with D = 1.8 and (b) its magnified portion
exhibiting the speckles.

d(a). In taking this pattern, a central portion was intentionally overexposed to make its decreasing region visible.
Speckles of this figure are much more visible in Fig. 3(b) which is a magnified portion of the pattern in Fig. 3(a).

Figures 4(a)-(c) show the speckled speckles observed at Py using the fractal objects of D = {a) 1.2, (b) 1.5, and
[c) .. A remarkable feature common to these figures is that they look quite different from ordinary speckle patterns
(see Fig. 5) in the sense that they have no definite speckle size, Instead, these patterns have lumps or clusters of
intensity with various scales. This appearance strongly implies the presence of fractality in these patterns. It is also
noted that the size of the intensity cluster tends to increase with an increase in the dimension of the fractal object,
implying an even longer correlation for a larger fractal dimension of the object. Figures 4(d), (e) and {f) show twice
magnified portions of (a), (b) and {c), respectively. Each of the magnified patterns looks similar in a statistical sense
to the corresponding original pattern, and this indicates the statistical self-similarity of these intensity distributions.

For comparison, a speckle pattern produced by the modified configuration described above is shown in Fig, 5.
This pattern corresponds to the most typical speckle pattern and has a well-defined speckle size. This fact is easily
recognized by comparing the pattern of Fig. 5(a) with its twice magnified portion shown in Fig. 3(h).

Being different from the conventional speckles shown in Fig. 5, the speckle patterns in Fig, 4 remind us of non-
Gaussian speckles, which are also known to exhibit a clustering of speckles under certain conditions.!! 1t is therefore
interesting to examine first order statistics of the observed speckles. To this end, probability densities were actually
calculated from the speckle intensities and were found to obey negative exponential density. This means that the
speckles shown in Figs. 4 and 5 are in the Gaussian regime and obey zero-mean circular complex Gaussian statistics.

3.3. Intensity correlations

To examine fractality of the speckles, we computed autocorrelation functions of the speckle intensities. Since the
patterns in Figs. 4 and 5 are statistically isotropic due to an isotropy of the employed objects, we derived an
angular-averaged correlation €;(r) from the two-dimensional correlation function <;(r), The results are shown
logarithmically in Fig. 6.

The intensity correlations denoted hy A-C in Fig. 6 aro for the speckled speckles due to the fractal objects, and
are approximately linear for r < 30 mm in a logarithmical plot. This means that the correlation functions are nearly
power functions as expected from eq. (5} in this range of . Hence, these speckles can be regarded as fractals at least
for the first approximation,

On the other hand, the correlation function labeled D corresponding to the pattern of Figs. 5 has a rather flat
region for small v with relatively clear cutoff beyond that region, in accordance with the existence of well-defined
speckle size. By contrast with this curve having the cutoff, the singular characteristic of the curves A-C is evident.
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Figure 4. Speckled-speckle patterns produced by using the fractal objects with the fractal dimension of [ = 1.2
(a) and (d); 1.5 (b) and (e); and 1.8 (c¢) and (f}. (d}, (e) and (f) are twice magnified portions of (a), (b} and {¢),

respectively, showing the statistically self-similar appearance.
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Figure 5. (a) Ordinary speckle pattern produced by remaoving the first object and the lens Ly and using a circular
aperture to mask directly the diffuser, and {b) a magnified portion of (a) by the factor of 2.
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Figure 6. Angular-averaged intensity correlation functions C'r(r) of speckles produced by the random fractal objects
of I} = (A) 1.2, (B) 1.5, and (C) 1.8, and by (D) the circular aperture set in contact with the diffuser without the
first object and L.
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Figure 7. Local slopes of the logarithmically plotted intensity correlation functions €(r) for three random fractal
objects.

It is noted, however, that the curves A-C are not straight lines but rather tend to bend downward slightly with
an increase in ». This is seen as deviations of the experimental points from their least-square fits shown by the solid
lines. This tendency makes it difficult to determine the global slopes of the curves and, therefore, we calculated local
slopes from every three successive points in each curve. The results for the three curves are shown in Fig. 7, which
may be compared with the theoretical slopes predicted by eq. (5); 2(0D = 2) = =16, —1, and —0.4 for D = 1.2 (A),
1.5 (B), and 1.8 (C), respectively. The experimental values shown in Fig. 7 are a little larger than the theoretical
predictions in most points, but have decreasing trends, approaching the theoretical values for larger r in the range
shown. It is noted that the local increases of the local slopes for D = 1.2 and 1.5 near the larger end of r is not
a significant trend, but is simply due to growing statistical fluctuations associated with the decreasing correlation

values for larger r.

3.4. Fractal dimension of the speckle pattern

The slope of the logarithmically plotted correlation function, i. e. the exponent of the power function, is an important
quantity for the characterization of fractal. To discuss about this quantity, we have to clear the problem concerning
the correlation funetion of fractals. As is shown in eq. (2), an isotropie spatial distribution of any quantity g(r) with
mass fractal property has a spatial correlation of

Colr) = (plr + 7')p(r')) oc v 4, (7)

where [, is the fractal dimension of p. However, the correlation function Cp{r) of eq. (5) has a different definition
from eq. (7) in such a way that the product of the average intensities is subtracted in the former. This difference
makes us hesitate in concluding that the speckles satisfying eq. (5) are fractal. However, this difficulty can be
overcome in the following discussion. -

The correlation in the form of eq. (7) is obeyed typically by fractal mass distributions with the non-negative mass
density. Nevertheless, eq. (7) requires that

Cary =0, as r — oo (8)

This is possible only for ideal fractal distributions having an unlimited spatial extent. For such fractals, unlimitedly
large vacancies can exist for v — oo, which gives rise to p(r) — 0, leading to a vanishing correlation. In other words,
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the average {p(r)) vanishes in the limit of an infinitely large fractal distribution, since the fractal dimension I, is
always smaller than the Euclidean dimension d of the space. In any practical fractal distributions, however, the
correlation never vanishes due to a finite extent of the fractality, but rather reaches the finite value given by {p{r]}z
for r exceeding the extent of the fractality. This corresponds to the term {£{r)}” to be subtracted from the speckle
correlation.

It is also noted that, for actual distributions, the peak wvalue of the correlation is also finite contrary to the
theoretical correlation of eq. (7). Therefore, a practical form for €, crossovers from the power law to a certain
finite value as r approaches 0, In the case of Gaussian speckles, there is an additional restriction for the correlation
function. For such speckle intensities that obey the negative exponential density, we have

(I*(r)) - {gt—r}:-ﬂ 1 )
(I(r))

which is actually the speckle contrast.!”> This property of Gaussian speckles restrict the correlation function to take
values only in the limited range.

Cy(0) =

With the above considerations in mind, we can invoke eq. (T) to relate the exponent in the intensity correlation
function to the fractal dimension of the speckle pattern. By comparing two exponents in egs, (5) and (7) and by
noting d = 2 in the present situation, we find a theoretical expression for the fractal dimension I, of the speckle
pattern to be D, = 2D - 2, which gives D), = (a) 0.4, (b) 1, and (c) 1.6 for the objects of 2 = (a) 1.2, (b) 1.5, and
(c) 1.8, respectively. If the experimental slopes of Fig. 7 are taken into account, the experimental values for D, for
Figs. 4{a)}-{c) would be a little smaller than these theoretical predictions.

4. THREE-DIMENSIONAL CORRELATION PROPERTIES

4.1. Lateral correlations at different propagation distances

Next, let us extend the observation plane of the preceding experiment to a three-dimensional region around the focal
plane to see whether the fractality of the field has a three-dimensional extent or not, That is, with reference to Fig. 1,
we consider an observation plane not restricted to the focal plane Py of Ly, but located at some distance z from L.

We first examined speckles produced by the three fractal objects at some distances other than the focal distance
fz. The obtained speckles are shown in Fig. 8 for nine combinations of the parameters z and [, D = (a) 1.2, (b)
1.5, and (¢} 1.8 for 2 = 10 cm (focal plane): D = (d) 1.2, (e] 1.5, and {f} 1.8 for z = 50 em; and I = (g) 1.2, (h)
1.5, and (i) 1.8 for z = 150 em. Hence, Figs. 2{a}—(c) have the same parameters as Fig. 4.

It is noted from Fig. 8 that the speckle patterns do not change much statistically with the propagation distance
z in the explored range. Namely, the speckles seem to depend only on the fractal dimension D of the first scattering
object, and not on the propagation distance z. From this observation, it is expected that the intensity correlation
function across the lateral observation planes does not change with z.

To verify this quantitatively, the intensity correlation functions Cy(r) were calculated from the ohserved speckle
patterns of the nine combinations of the parameters shown in Figs. 8(a}-(i), and were found to take substantially the
same power law for different distances for each value of D, though the correlation values seem to decrease slightly
with increasing z.

4.2, Longitudinal correlations

Next, we examine if these speckle fields have a fractality in the longitudinal direction as well as in the lateral
directions. To this end, the speckles were recorded at different longitudinal distances from z = 11 to 21 cm with a
step interval of 2 cm, and also at z = 10, 10.1, and 10.5 cm. From these data, the longitudinal correlations were
calculated and are shown in Fig, 9. Each data point was calculated from the two speckle patterns: one was fixed
at z; = 10 em as a reference pattern and the other was chosen from the patterns observed at different longitudinal
distances z. We see that the three experimental curves in this plot is approximately linear though the approximation
is not so good as the case of the lateral correlations shown in Fig, 6. The important point is, however, that the
longitudinal correlations of the present speckle fields have much longer tails than expected for ordinary speckles and,
hence, we can conclude that the speckled speckles produced by this experiment have a fairly high fractality in the
longitudinal direction as well as the lateral direction. It is also interesting to noted that the slopes of the linear

327

— 101 =




Figure 8. Speckled-speckle patterns observed at longitudinal distances of & = (a)-(c) 10, {d}—(D) 50, and {g)-(i)
150 em, and for different fractal dimensions of I = (a),(d),(g) 1.2; (b}, (e}, (k) 1.5; and (c), (f), (i) 1.8,
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Figure 9. Logarithmical plot of the longitudinal intensity correlations.

dependence in Fig, 9 are more gentle than the corresponding dependence of lateral correlation in Fig. 6. This means
that the longitudinal fractal dimension is larger than the lateral fractal dimension for each value of D. Hence, it
can be said that the intensity distribution around the focal plane has a three-dimensional fractality with a uniaxial

anisotropy.

. FRESNEL DIFFRACTION REGION

The defocused region as examined in the previous section corresponds to the Fresnel diffraction region of the second
diffuser. In order to see the fractal property in the Fresnel diffraction region more directly, we performed a further
experiment. of measuring intensity distributions by remaoving the lens Ly in Fig. 1. That is, scattered light from the
second diffuser is directly detected by the CCD camera as a function of the propagation distance z from the diffuser.

Three speckle patterns obtained by this configuration are shown in Fig. 10 for three distances of {a) 75, (b} 150
and (c) 300 mm from the diffuser. It is seen from this figure that the patterns have similar appearance in a statistical
sense apart from fine structures missing gradually with an increase of z. The intensity correlation functions derived
from the patterns in Fig, 10 are shown in Fig. 11. In Fig. 11, we can see that the slope of the linearities does not
change much with the propagation distance and is also same with that for the Fraunhofer diffraction plane. This
result indicates that the fractal property of the doubly scattered intensity distributions is maintained for a fairly
wide region including the Fresnel and Fraunhofer diffraction planes.

6. CONCLUSIONS

Theoretical and experimental studies on the generation of random intensity distributions with fractal properties are
sumtmarized.

Theoretical background was reviewed briefly to show that, when an ordinary diffuser is illuminated by the
Fraunhofer diffraction pattern of a random fractal object, autocorrelation functions of intensity distributions in the
Fraunhofer diffraction region of the ordinary diffuser take the form of a power function as an asymptotic behavior
for sutficiently small separation distances,

"This theoretical prediction was verified experimentally using three fractal ohjects having the fractal dimension of
D=12, 1.5, and 1.8 generated with band-limited Weierstrass functions. Some interesting features of the generated
fractal intensity distributions, such as intensity clustering, lack of definite speckle size, and statistical self-similar
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Figure 10. Speckled-speckle patterns observed in the Fresnel diffraction region of the second diffuser by using the
fractal object of D = 1.49. Observation distances are (a) 75, (b) 150 and (c¢) 300 mm from the diffuser.

appearance, were revealed. The fractal dimension I, of the speckle patterns obtained was discussed on the basis of
the general correlation properties of fractal distributions and was shown to be D, = 2D — 2 = 0.4, 1, and 1.6 for the
objects employed.

For the purpose of comparison, ordinary speckle patterns with definite speckle size were also produced and were
shown not to obey a power law but to have clear cutoff of correlation. For all the above speckle patterns produced,
the probability densities of intensity distributions were found to obey a negative exponential density, indicating that
the speckle fields obey zero-mean circular Gaussian statistics.

Intensity correlations were also examined in the three-dimensional space around the Fraunhofer diffraction plane of
the second diffuser, and it was found that the fractality extends three-dimensionally with different fractal dimension
in the axial direction. Fractal speckle patterns were also observed in the Fresnel diffraction region of the second
diffuser and the corresponding intensity correlation funetions were shown to obey almost the same power-law in the
range of propagation distances examined.

Finally, it is mentioned that the power laws appearing in various properties of fractals are manifestations of the
widespread distributions of associated quantities. Namely, the power-law intensity correlation implies that there are
widerange of correlations in that intensity distributions from very short correlation components to very large ones,
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Figure 11. Angular-averaged intensity correlation functions C;(r) of speckles produced by random fractal object
of D = 1.49 in the Fresnel diffraction region of the second diffuser. Observation distances are z = 75 (0), 150 (A)
and 300 mm (O}, Data for the Fraunhofer diffraction plane are also plotted with e,

Such properties will provide some advantages to optical technigques based on correlation properties of optical fields,
Applications of fractal optical field in such a field are expected,
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